Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Nat Aging ; 3(6): 722-733, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2322588

ABSTRACT

Coronavirus Disease 2019 (COVID-19) vaccination has resulted in excellent protection against fatal disease, including in older adults. However, risk factors for post-vaccination fatal COVID-19 are largely unknown. We comprehensively studied three large nursing home outbreaks (20-35% fatal cases among residents) by combining severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) aerosol monitoring, whole-genome phylogenetic analysis and immunovirological profiling of nasal mucosa by digital nCounter transcriptomics. Phylogenetic investigations indicated that each outbreak stemmed from a single introduction event, although with different variants (Delta, Gamma and Mu). SARS-CoV-2 was detected in aerosol samples up to 52 d after the initial infection. Combining demographic, immune and viral parameters, the best predictive models for mortality comprised IFNB1 or age, viral ORF7a and ACE2 receptor transcripts. Comparison with published pre-vaccine fatal COVID-19 transcriptomic and genomic signatures uncovered a unique IRF3 low/IRF7 high immune signature in post-vaccine fatal COVID-19 outbreaks. A multi-layered strategy, including environmental sampling, immunomonitoring and early antiviral therapy, should be considered to prevent post-vaccination COVID-19 mortality in nursing homes.


Subject(s)
COVID-19 , Humans , Aged , Phylogeny , COVID-19/epidemiology , SARS-CoV-2/genetics , Nursing Homes , Vaccination , Disease Outbreaks/prevention & control
2.
Nat Commun ; 14(1): 1332, 2023 03 11.
Article in English | MEDLINE | ID: covidwho-2277928

ABSTRACT

Currently, the real-life impact of indoor climate, human behaviour, ventilation and air filtration on respiratory pathogen detection and concentration are poorly understood. This hinders the interpretability of bioaerosol quantification in indoor air to surveil respiratory pathogens and transmission risk. We tested 341 indoor air samples from 21 community settings in Belgium for 29 respiratory pathogens using qPCR. On average, 3.9 pathogens were positive per sample and 85.3% of samples tested positive for at least one. Pathogen detection and concentration varied significantly by pathogen, month, and age group in generalised linear (mixed) models and generalised estimating equations. High CO2 and low natural ventilation were independent risk factors for detection. The odds ratio for detection was 1.09 (95% CI 1.03-1.15) per 100 parts per million (ppm) increase in CO2, and 0.88 (95% CI 0.80-0.97) per stepwise increase in natural ventilation (on a Likert scale). CO2 concentration and portable air filtration were independently associated with pathogen concentration. Each 100ppm increase in CO2 was associated with a qPCR Ct value decrease of 0.08 (95% CI -0.12 to -0.04), and portable air filtration with a 0.58 (95% CI 0.25-0.91) increase. The effects of occupancy, sampling duration, mask wearing, vocalisation, temperature, humidity and mechanical ventilation were not significant. Our results support the importance of ventilation and air filtration to reduce transmission.


Subject(s)
Air Pollution, Indoor , Humans , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Belgium , Respiration , Odds Ratio , Ventilation/methods
3.
Nat Commun ; 14(1): 824, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2244271

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.


Subject(s)
Antibodies, Neutralizing , BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , Antiviral Agents , Breakthrough Infections , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Biosens Bioelectron ; 217: 114663, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2235885

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need for improved technologies to help control the spread of contagious pathogens. While rapid point-of-need testing plays a key role in strategies to rapidly identify and isolate infectious patients, current test approaches have significant shortcomings related to assay limitations and sample type. Direct quantification of viral shedding in exhaled particles may offer a better rapid testing approach, since SARS-CoV-2 is believed to spread mainly by aerosols. It assesses contagiousness directly, the sample is easy and comfortable to obtain, sampling can be standardized, and the limited sample volume lends itself to a fast and sensitive analysis. In view of these benefits, we developed and tested an approach where exhaled particles are efficiently sampled using inertial impaction in a micromachined silicon chip, followed by an RT-qPCR molecular assay to detect SARS-CoV-2 shedding. Our portable, silicon impactor allowed for the efficient capture (>85%) of respiratory particles down to 300 nm without the need for additional equipment. We demonstrate using both conventional off-chip and in-situ PCR directly on the silicon chip that sampling subjects' breath in less than a minute yields sufficient viral RNA to detect infections as early as standard sampling methods. A longitudinal study revealed clear differences in the temporal dynamics of viral load for nasopharyngeal swab, saliva, breath, and antigen tests. Overall, after an infection, the breath-based test remains positive during the first week but is the first to consistently report a negative result, putatively signalling the end of contagiousness and further emphasizing the potential of this tool to help manage the spread of airborne respiratory infections.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Humans , Longitudinal Studies , RNA, Viral/analysis , Respiratory Aerosols and Droplets , SARS-CoV-2 , Silicon
5.
Cell Rep Med ; : 100850, 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2184476

ABSTRACT

The emergence of Omicron sublineages impacts the therapeutic efficacy of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs). Here, we evaluate neutralization and antibody-dependent cellular cytotoxicity (ADCC) activities of 6 therapeutic mAbs against Delta, BA.2, BA.4, and BA.5. The Omicron subvariants escape most antibodies but remain sensitive to bebtelovimab and cilgavimab. Consistent with their shared spike sequence, BA.4 and BA.5 display identical neutralization profiles. Sotrovimab is the most efficient at eliciting ADCC. We also analyze 121 sera from 40 immunocompromised individuals up to 6 months after infusion of Ronapreve (imdevimab + casirivimab) or Evusheld (cilgavimab + tixagevimab). Sera from Ronapreve-treated individuals do not neutralize Omicron subvariants. Evusheld-treated individuals neutralize BA.2 and BA.5, but titers are reduced. A longitudinal evaluation of sera from Evusheld-treated patients reveals a slow decay of mAb levels and neutralization, which is faster against BA.5. Our data shed light on antiviral activities of therapeutic mAbs and the duration of effectiveness of Evusheld pre-exposure prophylaxis.

6.
Viruses ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: covidwho-2155310

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the general population in the context of a relatively high immunity gained through the early waves of coronavirus disease 19 (COVID-19), and vaccination campaigns. Despite this context, a significant number of patients were hospitalized, and identifying the risk factors associated with severe disease in the Omicron era is critical for targeting further preventive, and curative interventions. We retrospectively analyzed the individual medical records of 1501 SARS-CoV-2 positive hospitalized patients between 13 December 2021, and 13 February 2022, in Belgium, of which 187 (12.5%) were infected with Delta, and 1036 (69.0%) with Omicron. Unvaccinated adults showed an increased risk of moderate/severe/critical/fatal COVID-19 (crude OR 1.54; 95% CI 1.09-2.16) compared to vaccinated patients, whether infected with Omicron or Delta. In adults infected with Omicron and moderate/severe/critical/fatal COVID-19 (n = 323), immunocompromised patients showed an increased risk of in-hospital mortality related to COVID-19 (adjusted OR 2.42; 95% CI 1.39-4.22), compared to non-immunocompromised patients. The upcoming impact of the pandemic will be defined by evolving viral variants, and the immune system status of the population. The observations support that, in the context of an intrinsically less virulent variant, vaccination and underlying patient immunity remain the main drivers of severe disease.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Retrospective Studies , Immunocompromised Host
7.
Viruses ; 14(10)2022 10 20.
Article in English | MEDLINE | ID: covidwho-2081913

ABSTRACT

An adequate SARS-CoV-2 genomic surveillance strategy has proven to be essential for countries to obtain a thorough understanding of the variants and lineages being imported and successfully established within their borders. During 2020, genomic surveillance in Belgium was not structurally implemented but performed by individual research laboratories that had to acquire the necessary funds themselves to perform this important task. At the start of 2021, a nationwide genomic surveillance consortium was established in Belgium to markedly increase the country's genomic sequencing efforts (both in terms of intensity and representativeness), to perform quality control among participating laboratories, and to enable coordination and collaboration of research projects and publications. We here discuss the genomic surveillance efforts in Belgium before and after the establishment of its genomic sequencing consortium, provide an overview of the specifics of the consortium, and explore more details regarding the scientific studies that have been published as a result of the increased number of Belgian SARS-CoV-2 genomes that have become available.


Subject(s)
COVID-19 , Pandemics , Humans , Belgium/epidemiology , COVID-19/epidemiology , Genome, Viral , Genomics , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing
8.
Arch Public Health ; 80(1): 212, 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2038928

ABSTRACT

BACKGROUND: We aimed to investigate the overall secondary attack rates (SAR) of COVID-19 in student residences and to identify risk factors for higher transmission. METHODS: We retrospectively analysed the SAR in living units of student residences which were screened in Leuven (Belgium) following the detection of a COVID-19 case. Students were followed up in the framework of a routine testing and tracing follow-up system. We considered residence outbreaks followed up between October 30th 2020 and May 25th 2021. We used generalized estimating equations (GEE) to evaluate the impact of delay to follow-up, shared kitchen or sanitary facilities, the presence of a known external infection source and the recent occurrence of a social gathering. We used a generalized linear mixed model (GLMM) for validation. RESULTS: We included 165 student residences, representing 200 residence units (N screened residents = 2324). Secondary transmission occurred in 68 units which corresponded to 176 secondary cases. The overall observed SAR was 8.2%. In the GEE model, shared sanitary facilities (p = 0.04) and the recent occurrence of a social gathering (p = 0.003) were associated with a significant increase in SAR in a living unit, which was estimated at 3% (95%CI 1.5-5.2) in the absence of any risk factor and 13% (95%CI 11.4-15.8) in the presence of both. The GLMM confirmed these findings. CONCLUSIONS: Shared sanitary facilities and the occurrence of social gatherings increase the risk of COVID-19 transmission and should be considered when screening and implementing preventive measures.

9.
Nat Commun ; 13(1): 4750, 2022 08 13.
Article in English | MEDLINE | ID: covidwho-1991597

ABSTRACT

Standard contact tracing practice for COVID-19 is to identify persons exposed to an infected person during the contagious period, assumed to start two days before symptom onset or diagnosis. In the first large cohort study on backward contact tracing for COVID-19, we extended the contact tracing window by 5 days, aiming to identify the source of the infection and persons infected by the same source. The risk of infection amongst these additional contacts was similar to contacts exposed during the standard tracing window and significantly higher than symptomatic individuals in a control group, leading to 42% more cases identified as direct contacts of an index case. Compared to standard practice, backward traced contacts required fewer tests and shorter quarantine. However, they were identified later in their infectious cycle if infected. Our results support implementing backward contact tracing when rigorous suppression of viral transmission is warranted.


Subject(s)
COVID-19 , Contact Tracing , COVID-19/epidemiology , Cohort Studies , Contact Tracing/methods , Humans , Quarantine
10.
Int J Infect Dis ; 123: 25-33, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966626

ABSTRACT

OBJECTIVES: We performed exhaled breath (EB) and nasopharyngeal (NP) quantitative polymerase chain reaction (qPCR) and NP rapid antigen testing (NP RAT) of SARS-CoV-2 infections with different variants. METHODS: We included immuno-naïve alpha-infected (n = 11) and partly boosted omicron-infected patients (n = 8) as high-risk contacts. We compared peak NP and EB qPCR cycle time (ct) values between cohorts (Wilcoxon-Mann-Whitney test). Test positivity was compared for three infection phases using Cochran Q test. RESULTS: Peak median NP ct was 11.5 (interquartile range [IQR] 10.1-12.1) for alpha and 12.2 (IQR 11.1-15.3) for omicron infections. Peak median EB ct was 25.2 (IQR 24.5-26.9) and 28.3 (IQR 26.4-30.8) for alpha and omicron infections, respectively. Distributions did not differ between cohorts for NP (P = 0.19) or EB (P = 0.09). SARS-CoV-2 shedding peaked on day 1 in EB (confidence interval [CI] 0.0 - 4.5) and day 3 in NP (CI 1.5 - 6.0). EB qPCR positivity equaled NP qPCR positivity on D0-D1 (P = 0.44) and D2-D6 (P = 1.0). It superseded NP RAT positivity on D0-D1 (P = 0.003) and D2-D6 (P = 0.008). It was inferior to both on D7-D10 (P < 0.001). CONCLUSION: Peak EB and nasopharynx shedding were comparable across variants. EB qPCR positivity matched NP qPCR and superseded NP RAT in the first week of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Respiratory System
11.
Epidemics ; 40: 100589, 2022 09.
Article in English | MEDLINE | ID: covidwho-1930857

ABSTRACT

OBJECTIVES: To better understand the conditions which have led to one of the largest COVID-19 outbreaks in Belgian nursing homes in 2020. SETTING: A nursing home in Flanders, Belgium, which experienced a massive outbreak of COVID-19 after a cultural event. An external volunteer who dressed as a legendary figure visited consecutively the 4 living units on December, 4th and tested positive for SARS-CoV-2 the next day. Within days, residents started to display symptoms and the outbreak spread rapidly within the nursing home. METHODS: We interviewed key informants and collected standardized data from all residents retrospectively. A batch of 115 positive samples with a Ct value of < 37 by qRT-PCR were analyzed using whole-genome sequencing. Six months after the outbreak, ventilation assessment of gathering rooms in the nursing home was done using a tracer gas test with calibrated CO2 sensors. RESULTS: Timeline of diagnoses and symptom onsets clearly pointed to the cultural event as the start of the outbreak, with the volunteer as index case. The genotyping of positive samples depicted the presence of one large cluster, suggesting a single source outbreak. By the end of December, a total of 127 residents and 40 staff were diagnosed with SARS-CoV-2 since the beginning of the outbreak. The attack rate among residents was 77 % and significantly associated with presence at the event but not with close contact or mask wearing. The ventilation assessment showed a high background average CO2 level in four main rooms varying from 657 ppm to 846 ppm. CONCLUSIONS: Our investigation shows a rapid and widespread single source outbreak of SARS-CoV-2 in a nursing home, in which airborne transmission was the most plausible explanation for the massive intra-facility spread. Our results underscore the importance of ventilation and air quality for the prevention of future outbreaks in closed facilities.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , Carbon Dioxide , Disease Outbreaks/prevention & control , Humans , Nursing Homes , Respiratory Aerosols and Droplets , Retrospective Studies
12.
Emerg Infect Dis ; 28(8): 1729-1731, 2022 08.
Article in English | MEDLINE | ID: covidwho-1902890

ABSTRACT

Illustrated by a clinical case supplemented by epidemiologic data, early reinfections with SARS-CoV-2 Omicron BA.1 after infection with Delta variant, and reinfection with Omicron BA.2 after Omicron BA.1 infection, can occur within 60 days, especially in young, unvaccinated persons. The case definition of reinfection, which influences retesting policies, should be reconsidered.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , COVID-19 Testing , Humans , Policy , SARS-CoV-2
13.
Emerg Infect Dis ; 28(8): 1699-1702, 2022 08.
Article in English | MEDLINE | ID: covidwho-1902888

ABSTRACT

We investigated the serial interval for SARS-CoV-2 Omicron BA.1 and Delta variants and observed a shorter serial interval for Omicron, suggesting faster transmission. Results indicate a relationship between empirical serial interval and vaccination status for both variants. Further assessment of the causes and extent of Omicron dominance over Delta is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Belgium/epidemiology , COVID-19/epidemiology , COVID-19/virology , Humans , SARS-CoV-2/genetics , Vaccination/statistics & numerical data
14.
PLoS One ; 17(6): e0269138, 2022.
Article in English | MEDLINE | ID: covidwho-1879315

ABSTRACT

INTRODUCTION: The pathogenesis of COVID-19 depends on the interplay between host characteristics, viral characteristics and contextual factors. Here, we compare COVID-19 disease severity between hospitalized patients in Belgium infected with the SARS-CoV-2 variant B.1.1.7 and those infected with previously circulating strains. METHODS: The study is conducted within a causal framework to study the severity of SARS-CoV-2 variants by merging surveillance registries in Belgium. Infection with SARS-CoV-2 B.1.1.7 ('exposed') was compared to infection with previously circulating strains ('unexposed') in terms of the manifestation of severe COVID-19, intensive care unit (ICU) admission, or in-hospital mortality. The exposed and unexposed group were matched based on the hospital and the mean ICU occupancy rate during the patient's hospital stay. Other variables identified as confounders in a Directed Acyclic Graph (DAG) were adjusted for using regression analysis. Sensitivity analyses were performed to assess the influence of selection bias, vaccination rollout, and unmeasured confounding. RESULTS: We observed no difference between the exposed and unexposed group in severe COVID-19 disease or in-hospital mortality (RR = 1.15, 95% CI [0.93-1.38] and RR = 0.92, 95% CI [0.62-1.23], respectively). The estimated standardized risk to be admitted in ICU was significantly higher (RR = 1.36, 95% CI [1.03-1.68]) when infected with the B.1.1.7 variant. An age-stratified analysis showed that among the younger age group (≤65 years), the SARS-CoV-2 variant B.1.1.7 was significantly associated with both severe COVID-19 progression and ICU admission. CONCLUSION: This matched observational cohort study did not find an overall increased risk of severe COVID-19 or death associated with B.1.1.7 infection among patients already hospitalized. There was a significant increased risk to be transferred to ICU when infected with the B.1.1.7 variant, especially among the younger age group. However, potential selection biases advocate for more systematic sequencing of samples from hospitalized COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Belgium/epidemiology , COVID-19/epidemiology , Hospitalization , Humans
15.
Viruses ; 14(6)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1869829

ABSTRACT

We report two clusters of SARS-CoV-2 B.1.617.2 (Delta variant) infections in a group of 41 Indian nursing students who travelled from New Delhi, India, to Belgium via Paris, France. All students tested negative before departure and had a second negative antigen test upon arrival in Paris. Upon arrival in Belgium, the students were quarantined in eight different houses. Four houses remained COVID-free during the 24 days of follow-up, while all 27 residents of the other four houses developed an infection during quarantine, including the four residents who were fully vaccinated and the two residents who were partially vaccinated. Genome sequencing revealed two distinct clusters affecting one and three houses, respectively. In this group of students, vaccination status did not seem to prevent infection nor decrease the viral load. No severe symptoms were reported. Extensive contact tracing and 3 months of nationwide genomic surveillance confirmed that these outbreaks were successfully contained and did not contribute to secondary community transmission in Belgium. These clusters highlight the importance of repeated testing and quarantine measures among travelers coming from countries experiencing a surge of infections, as all infections were detected 6 days or more after arrival.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Quarantine , SARS-CoV-2/genetics , Students
16.
Int J Infect Dis ; 122: 212-214, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1851266

ABSTRACT

On November 24, 2021, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant assigned to the lineage B.1.1.529 (Omicron) was first reported to the World Health Organization from South Africa. Despite the co-circulation of several SARS-CoV-2 variants, co-infection by different variants is not commonly identified. Here, we report two cases of SARS-CoV-2 co-identifications with the Omicron and Delta variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genome, Viral , Genomics , Humans , SARS-CoV-2/genetics
17.
Nat Med ; 28(6): 1297-1302, 2022 06.
Article in English | MEDLINE | ID: covidwho-1758268

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 Omicron BA.1 sublineage has been supplanted in many countries by the BA.2 sublineage. BA.2 differs from BA.1 by about 21 mutations in its spike. In this study, we first compared the sensitivity of BA.1 and BA.2 to neutralization by nine therapeutic monoclonal antibodies (mAbs). In contrast to BA.1, BA.2 was sensitive to cilgavimab, partly inhibited by imdevimab and resistant to adintrevimab and sotrovimab. We then analyzed sera from 29 immunocompromised individuals up to 1 month after administration of Ronapreve (casirivimab and imdevimab) and/or Evusheld (cilgavimab and tixagevimab) antibody cocktails. All treated individuals displayed elevated antibody levels in their sera, which efficiently neutralized the Delta variant. Sera from Ronapreve recipients did not neutralize BA.1 and weakly inhibited BA.2. Neutralization of BA.1 and BA.2 was detected in 19 and 29 out of 29 Evusheld recipients, respectively. As compared to the Delta variant, neutralizing titers were more markedly decreased against BA.1 (344-fold) than BA.2 (nine-fold). We further report four breakthrough Omicron infections among the 29 individuals, indicating that antibody treatment did not fully prevent infection. Collectively, BA.1 and BA.2 exhibit noticeable differences in their sensitivity to therapeutic mAbs. Anti-Omicron neutralizing activity of Ronapreve and, to a lesser extent, that of Evusheld is reduced in patients' sera.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Humans , Membrane Glycoproteins/genetics , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
18.
Diagn Microbiol Infect Dis ; 103(1): 115659, 2022 May.
Article in English | MEDLINE | ID: covidwho-1676696

ABSTRACT

We retrospectively compared the long-term evolution of IgG anti-spike (S) and anti-nucleocapsid (N) levels (Abbott immunoassays) in 116 non-severe and 115 severe SARS-CoV-2 infected patients from 2 university hospitals up to 365 days post positive RT-PCR. IgG anti-S and anti-N antibody levels decayed exponentially up to 365 days after a peak 0 to 59 days after positive RT-PCR. Peak antibody level/cut-off ratio 0 to 59 days after positive RT-PCR was more than 70 for anti-S compared to less than 6 for anti-N (P < 0.01). Anti-S and anti-N were significantly higher in severe compared to non-severe patients up to 180 to 239 days and 300 to 365 days, respectively (P < 0.05). Despite similar half-lives, the estimated time to 50% seronegativity was more than 2 years for anti-S compared to less than 1 year for anti-N in non-severe and severe COVID-19 patients, due to the significantly higher peak antibody level/cut-off ratio for anti-S compared to anti-N.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunoglobulin G , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity
19.
Microbiol Resour Announc ; 11(2): e0116121, 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1673354

ABSTRACT

We report the complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (lineage B.1.1.529) from a Belgian patient with a history of recent travel to Egypt. At the time of writing, this genome constituted the first confirmed case of an infection with the Omicron variant in Europe.

20.
Antiviral Res ; 198: 105253, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654044

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VoCs) has exacerbated the COVID-19 pandemic. End of November 2021, a new SARS-CoV-2 variant namely the omicron (B.1.1.529) emerged. Since this omicron variant is heavily mutated in the spike protein, WHO classified this variant as the 5th variant of concern (VoC). We previously demonstrated that the ancestral strain and the other SARS-CoV-2 VoCs replicate efficiently in and cause a COVID19-like pathology in Syrian hamsters. We here wanted to explore the infectivity of the omicron variant in comparison to the ancestral D614G strain in the hamster model. Strikingly, in hamsters that had been infected with the omicron variant, a 3 log10 lower viral RNA load was detected in the lungs as compared to animals infected with D614G and no infectious virus was detectable in this organ. Moreover, histopathological examination of the lungs from omicron-infected hamsters revealed no signs of peri-bronchial inflammation or bronchopneumonia.


Subject(s)
COVID-19/veterinary , Disease Models, Animal , SARS-CoV-2/growth & development , Animals , Cricetinae , Humans , Lung/virology , Mesocricetus/virology , Species Specificity , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL